If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+16t+80=0
a = -16; b = 16; c = +80;
Δ = b2-4ac
Δ = 162-4·(-16)·80
Δ = 5376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5376}=\sqrt{256*21}=\sqrt{256}*\sqrt{21}=16\sqrt{21}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16\sqrt{21}}{2*-16}=\frac{-16-16\sqrt{21}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16\sqrt{21}}{2*-16}=\frac{-16+16\sqrt{21}}{-32} $
| 1=-4+-f | | 7(c+6)=49 | | -5x+8x-8=3(x-4)-4 | | 10d-5=35 | | 6x+22=95 | | 6x-3-2x=29 | | 17x^2=160 | | 0.8p=20 | | 2(u+3)=3(1-3u)+23 | | -x+-16x=17 | | 20n=18n-10 | | -1.1=w/6+18.1 | | s×7+19=152 | | 2.5w=15 | | 4(w-14)-4=4 | | 12x-3+6x-3=90 | | 3÷x-2=5÷x+1 | | 2(y-3)+3y=0 | | 15=21-3s | | 20-5w=-6w | | -2y-20=-12y | | 3÷(x-2)=5÷(x+1) | | 9s-33=57 | | -13.9=1.1+y/8 | | F(x)=700(0.55)x | | 2.7^x-25=12 | | -8c-12=-7c | | w-58/8=4 | | 5x10=5x10 | | 8n^2+2n-91=0 | | -14h=18-15h | | 85,000=10,000(1.04)⁶x |